The ethics of contact tracing

After a much publicised “U-turn” the UK government has decided to change the architecture of its coronavirus contact tracing system and to embrace the one based on the interfaces being provided by Apple and Google. The inevitable cries of a government that does not know what it is doing, we told you it wouldn’t work and this means we have wasted valuable time in building a system that would help protect UK citizens have ensued. At times like these it’s often difficult to get to the facts and understand where the problems actually lie. Let’s try and unearth some facts and understand the options for the design of a contact tracing app.

Any good approach to designing a system such as contact tracing should, you would hope, start with the requirements. I have no government inside knowledge and it’s not immediately apparent from online searches what the UK governments exact and actual requirements were. However as this article highlights you would expect that a contact tracing system would need to “involve apps, reporting channels, proximity-based communication technology and monitoring through personal items such as ID badges, phones and computers.” You might also expect it to involve cooperation with local health service departments. Whether or not there is also a requirement to collate data in some centralised repository so that epidemiologists, without knowing the nature of the contact, can build a model of contacts to see if they are serious spreaders or those who have tested positive yet are asymptomatic, at least for the UK, is not clear. Whilst it would seem perfectly reasonable to want the system to do that, this is a different use case to the one of contact tracing. One might assume that because the UK government was proposing a centralised database for tracking data this latter use case was also to be handled by the system.

Whilst different countries are going to have different requirements for contact tracing one would hope that for any democratically run country a minimum set of requirements (i.e. privacy, anonymity, transparency and verifiability, no central repository and minimal data collection) would be implemented.

The approach to contact tracing developed by Google and Apple (the two largest providers of mobile phone operating systems) was published in April of this year with the detail of the design being made available in four technical papers. Included as part of this document set were some frequently asked questions where the details of how the system would work were explained using the eponymous Alice and Bob notation. Here is a summary.

  1. Alice and Bob don’t know each other but happen to have a lengthy conversation sitting a few feet apart on a park bench. They both have a contact tracing app installed on their phones which exchange random Bluetooth identifiers with each other. These identifiers change frequently.
  2. Alice continues her day unaware that Bob had recently contracted Covid-19.
  3. Bob feels ill and gets tested for Covid-19. His test results are positive and he enters his result into his phone. With Bob’s consent his phone uploads the last 14 days of keys stored on his phone to a server.
  4. Alice’s phone periodically downloads the Bluetooth beacon keys of everyone who has tested positive for Covid-19 in her immediate vicinity. A match is found with Bob’s randomly generated Bluetooth identifier.
  5. Alice sees a notification on her phone warning her she has recently come into contact with someone who has tested positive with Covid-19. What Alice needs to do next is decided by her public health authority and will be provided in their version of the contact tracing app.

There are a couple of things worth noting about this use case:

  1. Alice and Bob both have to make an explicit choice to turn on the contact tracing app.
  2. Neither Alice or Bob’s names are ever revealed, either between themselves or to the app provider or health authority.
  3. No location data is collected. The system only knows that two identifiers have previously been within range of each other.
  4. Google and Apple say that the Bluetooth identifiers change every 10-20 minutes, to help prevent tracking and that they will disable the exposure notification system on a regional basis when it is no longer needed.
  5. Health authorities of any other third parties do not receive any data from the app.

Another point to note is that initially this solution has been released via application programming interfaces (APIs) that allow customised contact tracing apps from public health authorities to work across Android and iOS devices. Maintaining user privacy seems to have been a key non-functional requirement of the design. The apps are made available from the public health authorities via the respective Apple and Google app stores. A second phase has also been announced whereby the capability will be embedded at the operating system level meaning no app has to be installed but users still have to opt into using the capability. If a user is notified she has been in contact with someone with Covid-19 and has not already downloaded an official public health authority app they will be prompted to do so and advised on next steps. Only public health authorities will have access to this technology and their apps must meet specific criteria around privacy, security, and data control as mandated by Apple and Google.

So why would Google and Apple choose to implement its contact tracing app in this way which would seem to be putting privacy ahead of efficacy? More importantly why should Google and Apple get to dictate how countries should do contact tracing?

Clearly one major driver from both companies is that of security and privacy. Post-Snowden we know just how easy it has been for government security agencies (i.e. the US National Security Agency and UK’s Government Communications Headquarters) to get access to supposedly private data. Trust in central government is at an all time low and it is hardly surprising that the corporate world is stepping in to announce that they were the good guys all along and you can trust us with your data.

Another legitimate reason is also that during the coronavirus pandemic we have all had our ability to travel even locally, never mind nationally or globally, severely restricted. Implementing an approach that is supported at the operating system level means that it should be easier to make the app compatible with other countries’ counterparts, which are based on the same system therefore making it safer for people to begin travelling internationally again.

The real problem, at least as far as the UK has been concerned, is that the government has been woefully slow in implementing a rigorous and scaleable contact tracing system. It seems as though they may have been looking at an app-based approach to be the silver bullet that would solve all of their problems – no matter how poorly identified these are. Realistically that was never going to happen, even if the system had worked perfectly. The UK is not China and could never impose an app based contact tracing system on its populace, could it? Lessons from Singapore, where contact tracing has been in place for some time, are that the apps do not perform as required and other more intrusive measures are needed to make them effective.

There will now be the usual blame game between government, the press, and industry, no doubt resulting in the inevitable government enquiry into what went wrong. This will report back after several months, if not years, of deliberation. Blame will be officially apportioned, maybe a few junior minister heads will roll, if they have not already moved on, but meanwhile the trust that people have in their leaders will be chipped away a little more.

More seriously however, will we have ended up, by default, putting more trust into the powerful corporations of Silicon Valley some of whom not only have greater valuations than many countries GDP but are also allegedly practising anti-competitive behaviour?

Update: 21st June 2020

Updated to include link to Apple’s anti-trust case.

Leave a comment